

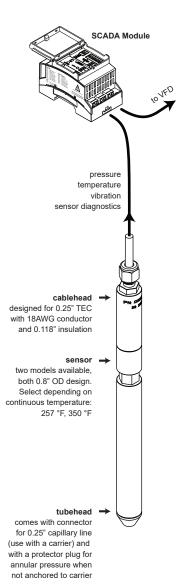

| Document Information |                                  |
|----------------------|----------------------------------|
| Supplier             | RhinoSensor                      |
| Title                | Well Pressure Sensor User Manual |
| Source Part Number   | PTC-0266                         |
| Printed Part Number  | PTC-1373                         |
| Revision Date        | 01/12/09                         |





## SENSOR

### SENSOR


Pressure sensor designed for oil well fluid level monitoring in wells with up to 350°F ambient temperature. Robustly designed for these high ambient temperatures the sensor is suitable for artificial lift monitoring, including vibration monitoring as standard. Each sensor has an outer diameter of only 0.8", increasing its suitability to a wider range of oil wells than 1" and 1.25" OD sensors. The sensor's cablehead has been developed for ¼" TEC (18AWG, 0.118" insulation) resulting in a multiple barrier design intended to function even when the cablehead becomes flooded

Using the latest microprocessor technology each sensor achieves its maximum performance by combining high temperature, nonvolatile memory to store the digitally mapped, silicon pressure transducer's calibration coefficient and other important manufacture data.

Communications use a digital, error-checked method with multilevel filtering to eliminate the e fect of noise.

A downgraded 257°F version is available.

At surface a simple SCADA module integrates with the standard drive packages. Data logging, fluid level control and data display are all provided by the drive package.

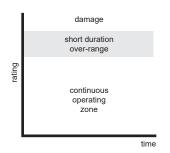






### Specification

| Part Number    | PTC-1372                                                                    |
|----------------|-----------------------------------------------------------------------------|
| Description    | RhinoSensor, 257°F and 350°F Variants                                       |
| Environment    | Oil and Water Wells with Downhole Pumps                                     |
| Dimensions     | 0.8" OD, 10.0" Long (11.0" if Tubehead fitted                               |
| Weight         | 1#                                                                          |
| Supply Voltage | 9VDC                                                                        |
| Supply Current | 5mA                                                                         |
| Connections    | Custom Cablehead and Tubehead                                               |
| Cablehead      | Custom Cablehead with 1/4" Compression Fitting and Kemlon Boot 16-B-1381-73 |
| Tubehead       | Custom Tubehead with 1/4" Compression fittin                                |
| Sensor Types   | RhinoSensor Sensor Models listed                                            |
| PTC-1166       | Single Pressure, Temperature, Vibration Sensor, 257°F Model                 |
| PTC-1372       | Single Pressure, Temperature, Vibration Sensor, 350°F Model                 |
| SCADA          | Compatible with Modbus SCADA Module PTC-1371                                |

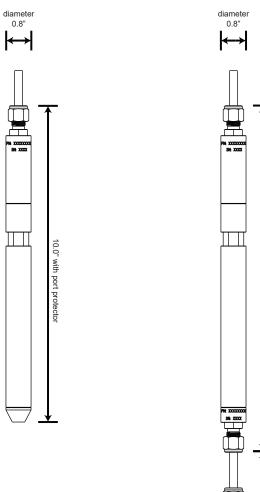

| Performance      | Pressure       | Temperature  | Temperature  | Vibration          |
|------------------|----------------|--------------|--------------|--------------------|
| Туре             | Digital Strain | Internal RTD | Internal RTD | Digitally Filtered |
|                  | Gauge          | Sensor       | Sensor       | Accelerometer      |
|                  | Technology     |              |              |                    |
| Rated Range      | 6 000 psi      | 257 °F       | 350 °F       | 12.00 g            |
| Rated Over-Range | 9 000 psi      | 320 °F       | 380 °F       | 12.00 g            |
| Accuracy         | 6 psi          | 0.5 °F       | 0.5 °F       | 0.10 g             |
| Resolution       | 1 psi          | 0.1 °F       | 0.1 °F       | 0.05 g             |
| Refresh Rate     | 1 sec          | 1 sec        | 1 sec        | 1 sec              |

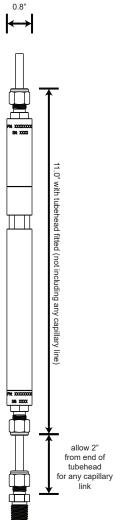




### **Ratings and Over-Range**

All sensors have a rated (calibrated) range and a permitted over-range. The over-range limit is an absolute maximum and should never be exceeded. The sensor should not be operated for a significant period of time above the rated value.





RHINO





### Dimensions









### **Manufacture Testing and Certification**

Each sensor is supplied with a Certificate of Conformity which details the test results as shown in the diagram below.

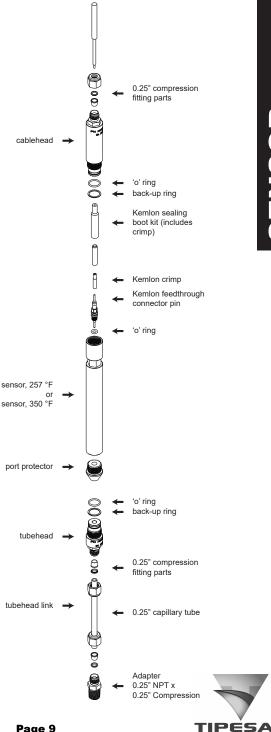
- 1. part number
- 2. part revision
- 3. serial number
- 4. firmware revision
- 5. location of manufacture
- 6. date of manufacture
- 7. test technician name
- 8. pressure and temperature test result matrix
- 9. accelerometer test result matrix
- 10. performance graph












### FAMILIARISATION

Before using the sensor you should become familiar with it's various parts.

Cablehead, sensor, port protector, tubehead and all the compression nuts are 9/16" AF. You will need two open end 9/16" wrenches to work with the sensor.

Kemlon crimp is a specialist item and is fitted to the TEC conductor using a DMC crimp tool with TP700 turret. Make sure to have this tool before starting the job.

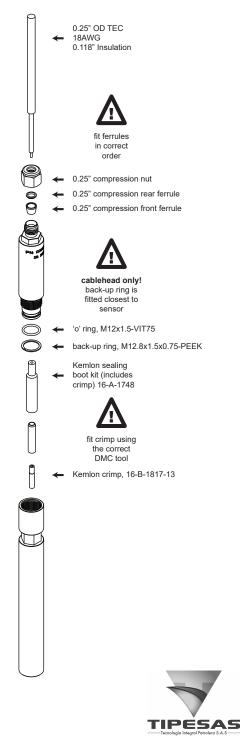




### Cablehead

On the top (downstream end) of the sensor is a cablehead.

The function of the cablehead is to connect the TEC to the sensor. Fitted correctly it is a reliable connection and will continue to ensure sensor function even if the cablehead becomes flooded


This cablehead is only for 316SS, 0.25" OD Tubing Encapsulated Cable. Inside the cablehead a sealing rubber boot is fitted to the TEC inner conductor. The standard boot is for 18AWG conductor with 0.118" OD insulation.

If you use a different TEC then consult RhinoSensor. The supplied boot kit may need replaced with one compatible with your TEC and the sensor connector pin (Kemlon 16-A-1748).

Replacement cablehead and boot kit are supplied as part of the Re-Install Kit.

We recommend replacing the 'o' ring (M12x1.5-VIT75) and back-up ring (M12.8x1.5x0.75-PEEK) when you re-run the sensor. You will need to replace the boot kit when you re-run the sensor. All parts (cablehead, compression fitting parts, O ring, boot kit) come in the Re-Install Kit which can be ordered separately (PTC-1102).

You may manufacture a replacement or a custom cablehead. Download the manufacture drawing and model from the web site.

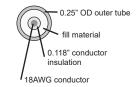




# SENSOR

### **TEC Suitability**

The sensor is compatible with a wide variety of tubing encapsulated cable. However, the installation kit which comes with a new sensor (and a replacement re-installation kit) is specific to TEC with this specification


- 0.25" OD Tube
- 0.118" Insulation Over Conductor
- 18AWG Conductor

If you choose to use a different cable you need to check compatibility. Contact RhinoSensor for support.



check the supplied boot kit is compatible with your TEC

DRAKA TEC 029112 is compatible with supplied boot kit: KemIon 16-B-1381-73



using different TEC?



boot kit compatibility check

boot hole must be sized for the TEC conductor insulation to ensure a reliable seal in case of fluid ingress

### ł

insulator hole must be sized for the TEC conductor insulation to allow it to pass through

### ł

conductor AWG size must be correct to ensure proper crimping

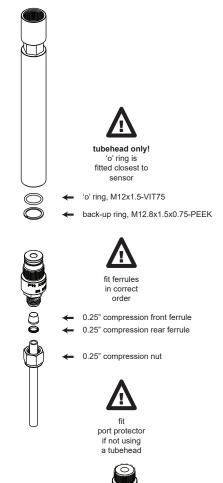
P





### Tubehead

At the upstream end of the sensor is the pressure port. This may remain open to the well (to measure annulus pressure) or can be fitted with a special tubehead to connect the sensor to a capillary line (the capillary line would connect into a ported carrier to measure tubing pressure).


Inside this port on the sensor is a protector which will remain in place during operation. Do not attempt to remove this as you may damage the transducer.

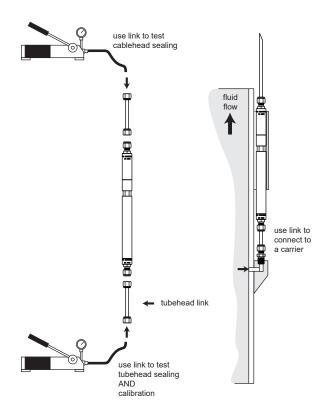
The tubehead connector is designed only for 316SS, 0.25" OD Capillary Tube.

Replacement tubehead are available. These are supplied as part of a Re-Install Kit.

We recommend replacing the O ring (M12x1.5-VIT75) and back-up ring (M12.8x1.5x0.75-PEEK) when you re-run the sensor. All parts (tubehead, compression fitting parts, O ring) come in the Re Installation Kit. This kit comes with the sensor and may be ordered separately as a service item.

You may manufacture a replacement or a custom tubehead (possibly to anchor sensor to a carrier or clamp). Download the manufacture drawing and model from the web site.



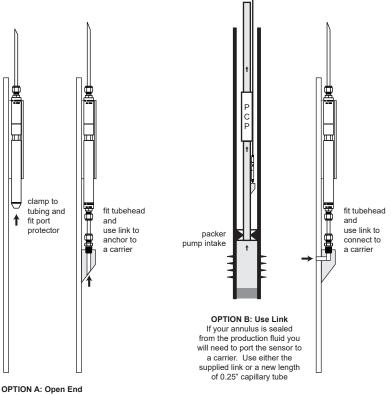





### Tubehead Link

This small sub-assembly is supplied with the tubehead as part of the Re-Install Kit (supplied with every new sensor and also available as a service item).

The link is pre-assembled and pressure tested and can be used to (a) apply a test pressure to the sensor pressure port, and (b) connect the sensor to a carrier.








### **Carrier Selection**

You may choose to use either a tubing carrier or clamp. If you are to measure tubing ID pressure then you will require a tubing carrier. The tubing carrier may port directly to the upstream connection on the sensor or use a tubehead link.



When measuring annulus pressure you do not need to fit the tubehead and can simply leave the protector in place.





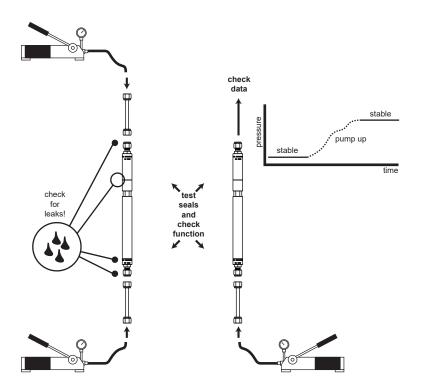
### INSTALLATION

Now that you are familiar with the different parts of the sensor you are ready to install it. First, you should start with a field test making sure your sensor has not been subject to transit damage.










### **Field Testing**

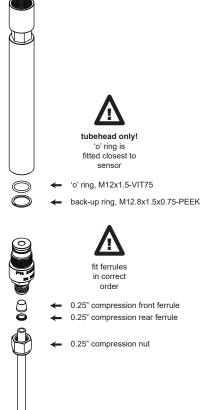
Every sensor should be tested before installation.

The simplest test is a function check, ensuring you have zero data errors. Simply connect the sensor to the SCADA module and wait for the SENSOR LED to illuminate indicating a message has been successfully received.

You can also apply pressure to the port and check the sensor reading matches the pressure applied.








### **Tubehead Fitting**

You may choose to fit the tubehead to the tube first or fit the tube to the sensor with a tubehead attached, as is described below:

- 1. remove the tubehead
- 2. remove old 'o' ring and back up ring
- 3. clean the tubehead
- 4. grease the thread and 'o' ring groove
- 5. fit the 'o ring and back up ring
- 6. attach tubehead to the sensor
- 7. fit compression fitting ferrul
- 8. lightly attach compression fitting nu
- 9. cut capillary line
- 10. insert into tubehead
- 11. tighten compression fitting nu

If you wish you can attach a pressure pump to the other end of the capillary line and pressure test for leaks at the compression fitting or 'o ring seal. You can also check the calibration on the sensor.







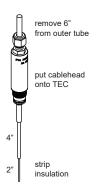


### **Cablehead Fitting**

It is recommended that you practice fitting of the cablehead to make sure you are comfortable with the process. A badly fitted cablehead may work for a time but can result in a failure later in the installations life.

When practicing fitting of the cablehead you will need replacement crimps (see Servicing part list). All other parts are reusable.

### Step 1: Prepare Cablehead

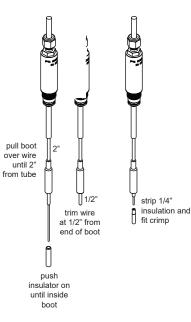

- remove the cablehead
- · remove the old 'o' ring and backup ring
- clean the cablehead
- clean inside the sensor cablehead
  connection
- fit the compression ferrules and nut
  (loosely) to the cablehead
- put aside for now

### Step 2: Strip TEC End

- cut the TEC
- remove 6" of outer tube
- remove the fill material which is over the insulation
- strip 2" of insulation
- twist the conductor to make it easier to work with

### Step 3: Fit Cablehead to TEC

- put the cablehead over the TEC
- move it along the TEC, out of the way




### Step 4: Fit the Sealing Boot

- thread the bare conductor through the boot
- using the conductor pull the insulated wire through the boot
- pull until there is a 2" gap from the cut end of the TEC outer tube to the boot
- put the white insulator over the conductor
- push the insulator up into the boot until the end is flush with the boot s open end

### Step 5: Fit Crimp

- cut the conductor at the end of the boot
- push the boot up 1/2"
- remove 1/4" insulation
- attach a crimp using the DMC crimp tool
  with TP700 turret set to 18AWG







### Step 6: Assemble Boot

- pull the boot down, locking the crimp into the insulator
- keep pulling the boot down until the insulator moves up and locks into the boot

### Step 7: Re-Inspect Cablehead

•

- inspect (clean if required) the cablehead thread and 'o' ring groove
- grease the thread and groove

### Step 8: Connect to Sensor

- plug the boot onto the sensor connector
- push firmly until it locks on the connecto
- screw on the cablehead, folding the
  insulated wire to the side of the boot
- keep screwing down, keeping the
  insulated wire inside the cablehead

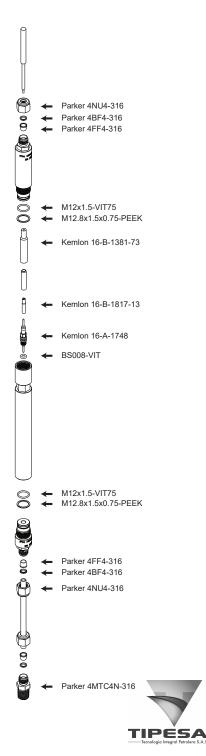
### Step 9: Tighten Compression Fitting

- push the TEC into the cablehead
- secure the compression nut

Step 10: Function Test



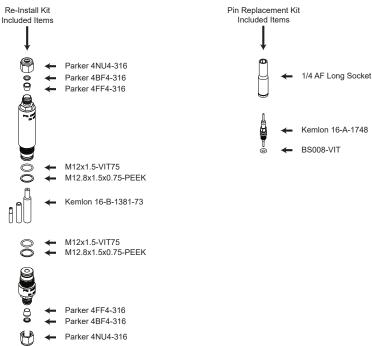





### Servicing

The tubehead and cablehead can be replaced. A service item, Re-Install Kit, is available.

Calibration of the sensor may be checked by connecting a pressure source to the tubehead and pressuring the sensor. Any sensor which requires recalibration or repair should be returned to RhinoSensor with a purchase order for PTC-1302 Recalibration and PTC-1303 Repair.


There are no user serviceable items within the sensor. Any sensors which have been disassembled will not be accepted for PTC-1302 Recalibration and PTC-1303 Repair and will have to be replaced.

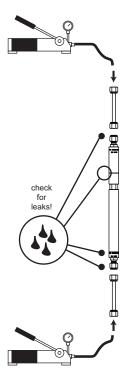




| 2 |
|---|
| 0 |
| S |
|   |

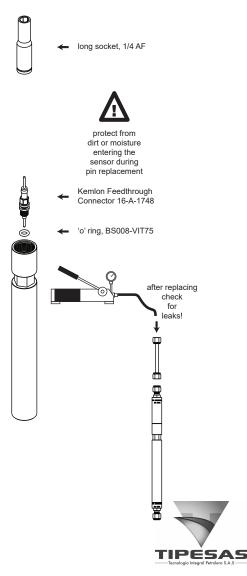
| Service Items               | Part Number | Alternate Supplier Part Numbers         |
|-----------------------------|-------------|-----------------------------------------|
| Replacement Sensor, 257 °F  | PTC-1393    |                                         |
| Replacement Sensor, 350 °F  | PTC-1394    |                                         |
| Sensor, Re-Install Kit      | PTC-1102    | WARNING: Not a complete list            |
|                             |             | Rear Ferrule: Parker 4BF4-316           |
|                             |             | Front Ferrule: Parker 4FF4-316          |
|                             |             | Nut: Parker 4NU4-316                    |
|                             |             | Boot Kit: Kemlon 16-B-1381-73           |
|                             |             | O-Ring: Metric M12x1.5-VIT75            |
|                             |             | Backup Ring: Metric M12.8x1.5x0.75-PEEK |
| Sensor, Pin Replacement Kit | PTC-1100    | Pin: Kemlon 16-A-1748                   |
|                             |             | Tool: Long Socket 1/4" AF               |
|                             |             | O-Ring: BS008-VIT75                     |
| Sensor, Recalibration       | PTC-1302    |                                         |
| Sensor, Repair              | PTC-1303    |                                         |
| DMC Crimp Tool with Turret  | PTC-1101    | DMC-AF8 M22520/1-01 (Crimp Tool)        |
|                             |             | DMC-TP700 (Turret)                      |
| Replacement Crimps, 18AWG   | PTC-1187    | Kemlon 16-B-1817-13                     |











### Pressure Testing

Each sensor can be fully pressure tested using just a hand pump and tubehead. Connect the tubehead to the pressure port of the sensor and pump up to the test pressure, and then repeat the test on the cablehead end of the sensor.



### **Connector Replacement**

Broken or damaged cable connector pins can be replaced. Order a PTC-1100 Pin Replacement Kit. The kit which you will be supplied includes the tools to remove the old pin and fit the supplied replacement. Instruction describe the actions required to keep the area clean and ensure a good fit of the pin. After fitting the sensor cablehead end must be pressure tested to ensure the pin seal is holding pressure and can withstand a cablehead flood at pressure



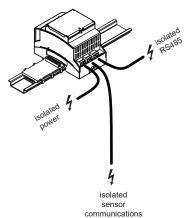


### SCADA

### SCADA MODULE

SCADA module to communicate with the RhinoSensor downhole sensor and provide visual and SCADA diagnostics on the module, cable and sensor performance. Module is independent of the sensor and you can freely move a module from one well to another. A bus connection system is available to stack multiple modules together in a test or well-cluster location.

Although normally powered by 24VDC from your SCADA system the module is designed to allow operation from a 12V battery source, allowing you to power from a truck power point, battery or solar array.


The module is triple isolated:

- Incoming supply power
- Modbus RTU 485 port
- Sensor communications port

Filtering is employed on the communications port to ensure trouble-free operation even in the noisiest environments. The filtering is proven to eliminate the noise coupled from running the sensor surface cable alongside the drivehead power cables originating from a variable speed drive.

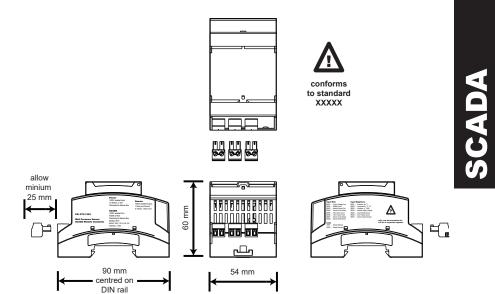
Modbus RTU is available on an 2-wire RS485 link. The port is isolated. Registers, input bits and coils are implemented to access sensor data, diagnostics, test functions and the status of the sensor and module. RTU Address (1-255) and BAUD (38.4, 19.2, 9.6, 4.8) are changed using switches on the front of the module.

LEDs are used to show the status of the system. A troubleshooting guide is provided.



TIPESAS

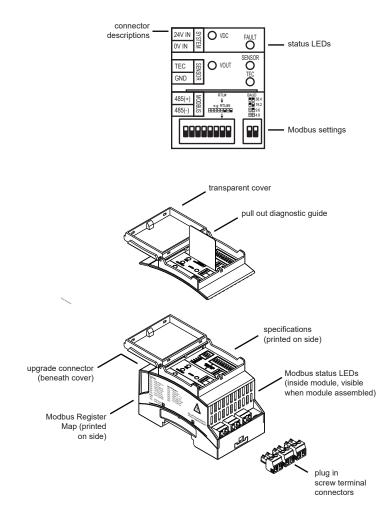



### Specification

| Part Number    | PTC-1371                                                                    |
|----------------|-----------------------------------------------------------------------------|
| Description    | RhinoSensor Sensor SCADA Module                                             |
| Environment    | To be located within a protective host enclosure only                       |
| Temperature    | -40 °F to +170 °F                                                           |
| Humidity       | 95%                                                                         |
| Dimensions     | 54mm (width on rail) x 90mm (symmetrical on rail) x 60mm (height from rail) |
| Weight         | 0.5#                                                                        |
| Supply Voltage | 24VDC                                                                       |
| Supply Current | 150mA                                                                       |
| Connections    | Removable Screw Terminals, 0.2" Pitch                                       |
| Power Supply   | 1000V Isolated, 2 Way Connector, Phoenix Contact 1836189                    |
| Sensor         | 1000V Isolated, 2 Way Connector, Phoenix Contact 1836189                    |
| Modbus         | 1000V Isolated, 2 Way Connector, Phoenix Contact 1836189                    |
| Sensor Types   | compatible with RhinoSensor Sensor Models listed                            |
| PTC-1166       | Single Pressure, Temperature, Vibration Sensor, 257°F Model                 |
| PTC-1372       | Single Pressure, Temperature, Vibration Sensor, 350°F Model                 |
| SCADA          | Isolated RS485 2-Wire Port                                                  |
| Protocol       | Modbus RTU                                                                  |
| Address Range  | 1-255 (0 for broadcast)                                                     |
| BAUD Rates     | 38.4 - 19.2 - 9.6 4.8 kbps                                                  |
| Registers      | Standard Modbus Register Ranges                                             |
| 0XXXX          | Coils (Control Commands)                                                    |
| 1XXXX          | Status Bits (Live Status)                                                   |
| 3XXXX          | Input Registers (Live Data)                                                 |
| 4XXXX          | Holding Registers (Factory Settings)                                        |



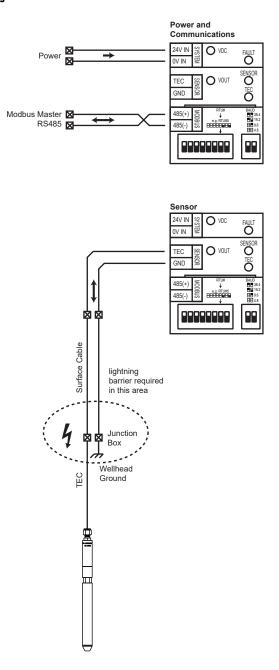



Dimensions








### **Functional Parts**



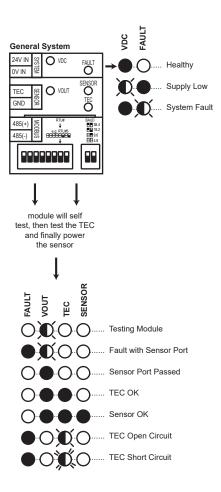




### **Module Wiring**








### **LED** Function

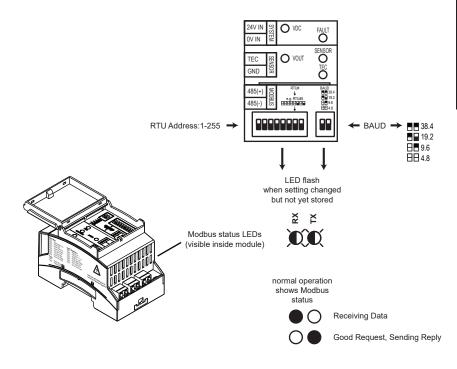
There are 7 LED on the module:

| LED       | Description                                                                                                                                                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modbus RX | will flash when data is received<br>on the 485 port. RX and TX will<br>flash together rapidly (4 times<br>per second) when the new<br>switch settings for RTU# and<br>BAUD have not yet been stored.                                                            |
| Modbus TX | will flash when data is<br>transmitted on the 485 port.<br>Occurs if the Master request<br>is accepted and a response<br>is sent.                                                                                                                               |
| VDC       | will be solid on when power<br>is OK. If power is low then<br>the VDC LED will flash and<br>the FAULT LED will light.<br>The module will shutdown all<br>functions.                                                                                             |
| FAULT     | this will light to indicate a<br>general FAULT within the<br>module. It will flash together<br>with another LED to indicate<br>a FAULT with that particular<br>function.                                                                                        |
| VOUT      | lights to state the sensor<br>connection is powered.<br>Flashing indicates it is restarting.<br>Flashing with a FAULT flash<br>indicates a fault with the sensor<br>connection circuit (this is self<br>tested during every start and<br>restart of the module) |
| SENSOR    | lights solid when the sensor is<br>found. If the sensor is faulty the<br>FAULT and SENSOR LEDs will<br>both flash                                                                                                                                               |

| LED | Description                         |
|-----|-------------------------------------|
| TEC | lights solid to show the cable is   |
|     | good (i.e. not open circuit, not    |
|     | short circuit). A flashing TEC      |
|     | LED with FAULT on indicates a       |
|     | cable fault. To identify between    |
|     | a short and open the TEC LED        |
|     | will flash di ferently during these |
|     | fault conditions: single flash is   |
|     | OPEN, double flash is SHO T.        |








### Modbus

All data, status and remote functions (e.g. restart) are available across Modbus. The module implements Modbus RTU protocol with address range 1-255 (0 reserved for broadcast). The physical connection is RS485 2-Wire Connection. This physical link is isolated to prevent ground loops.

### Setting RTU and BAUD

These are set using the switches on the front of the module. You do not need to cycle the power to the module for the changes to take effect. Any new setting takes effect 5 seconds after any switch has been changed. During this 5 second period the Modbus status LEDs flash rapidl.







### Coils

| Register | Description    |                         |
|----------|----------------|-------------------------|
| 00001    | Restart Module | 1=Restart (resets to 0) |
| 00002    | Restart Sensor | 1=Restart (resets to 0) |

Status Bits

| Register | Description         |                   |
|----------|---------------------|-------------------|
| 10001    | Supply Voltage Low  | Set=Low           |
| 10002    | Module Fault        | Set =Fault        |
| 10003    | Module Output Fail  | Set =Fail         |
| 10004    | Sensor Error Detect | Set =Error        |
| 10005    | TEC Open Circuit    | Set =Open         |
| 10006    | TEC Ground Fault    | Set =Short        |
| 10007    | Sensor Over-Range   | Set =Over-Range   |
| 10008    | Sensor Self-Protect | Set =Self-Protect |

### Input Registers

| Register | Description                      |           |
|----------|----------------------------------|-----------|
| 30001    | Intake Pressure                  | psi *10   |
| 30002    | Discharge Pressure               | psi*10    |
| 30003    | Intake Temperature               | C*10      |
| 30004    | Discharge Temperature            | C*10      |
| 30005    | Circuit Temperature              | C*10      |
| 30006    | Vibration on X Axis              | g*1000    |
| 30007    | Vibration on Y Axis              | g*1000    |
| 30008    | Vibration on Z Axis              | g*1000    |
| 30009    | Azimuth                          | deg*100   |
| 30010    | Zenith                           | deg*100   |
| 30011    | Intake Transducer Temperature    | C*10      |
| 30012    | Discharge Transducer Temperature | C*10      |
| 31000    | Motor Temperature                | C*10      |
| 31001    | Motor Oil Temperature            | C*10      |
| 32000    | Module Supply Voltage            | V*1000    |
| 32001    | Module Output Current            | mA*10     |
| 32002    | Sensor Packets Count             | 0 - 65535 |
| 32003    | Sensor Good Packets Count        | 0 - 65535 |
| 32004    | Sensor Bad Packets Count         | 0 - 65535 |





| 39000 | Sensor Serial Number            | 0 - 65535                                                                                                                                                                                                                                                                                                                         |
|-------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39001 | Sensor Part Number              | 0 - 65535                                                                                                                                                                                                                                                                                                                         |
| 39002 | Sensor Temperature Range        | C*1                                                                                                                                                                                                                                                                                                                               |
| 39003 | Sensor Intake Pressure Range    | psi*1                                                                                                                                                                                                                                                                                                                             |
| 39004 | Sensor Discharge Pressure Range | psi*1                                                                                                                                                                                                                                                                                                                             |
| 39005 | Sensor Firmware Revision        | value *100                                                                                                                                                                                                                                                                                                                        |
| 39006 | Sensor Service TAG Char 1       | ASCII Char Value                                                                                                                                                                                                                                                                                                                  |
| 39007 | Sensor Service TAG Char 2       | ASCII Char Value                                                                                                                                                                                                                                                                                                                  |
| 39008 | Sensor Service TAG Char 3       | ASCII Char Value                                                                                                                                                                                                                                                                                                                  |
| 39009 | Sensor Service TAG Char 4       | ASCII Char Value                                                                                                                                                                                                                                                                                                                  |
| 39010 | Fault Status Word               | b0: Supply Voltage Low, Set =Low<br>b1: Module Fault, Set =Fault<br>b2: Module Output Fail, Set =Fail<br>b3: Sensor Error Detect, Set =Error<br>b4: TEC Open Circuit, Set =Open<br>b5: TEC Ground Fault, Set =Short<br>b6: Sensor Over-Range, Set =Over-Range<br>b7: Sensor Self-Protect, Set =Self-Protect<br>b8 - b15: not used |

### Holding Registers

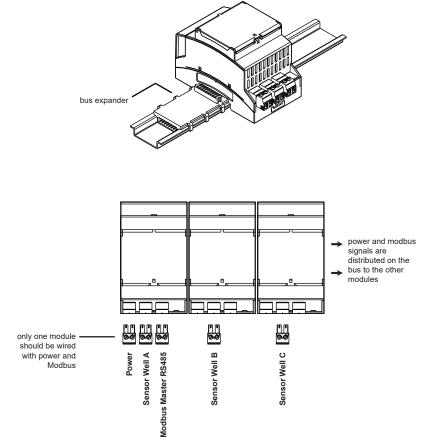
| Register | Description               |                  |
|----------|---------------------------|------------------|
| 40001    | Module Part Nunber        | 0 - 65535        |
| 40002    | Module Revision           | 0 - 65535        |
| 40003    | Module Serial Number      | 0 - 65535        |
| 40004    | Module Firmware Revision  | value *100       |
| 40005    | Module Service TAG Char 1 | ASCII Char value |
| 40006    | Module Service TAG Char 2 | ASCII Char value |
| 40007    | Module Service TAG Char 3 | ASCII Char value |
| 40008    | Module Service TAG Char 4 | ASCII Char value |
| 40099    | Reserved - Do Not Write   |                  |





### Servicing

There are no user serviceable functions inside the module. The only service item available is an Installation Kit which comes with replacement connectors and programming port cover.


| Service Items             | Part Number | Supplier Part Number                                         |
|---------------------------|-------------|--------------------------------------------------------------|
| Replacement SCADA Module  | PTC-1395    |                                                              |
| Module Install Kit        | PTC-1111    | Phoenix Contact 1836189 (3 req'd)<br>Phoenix Contact 2896225 |
| Module, Bussing Kit       | PTC-1222    | Phoenix Contact 2896458                                      |
| Module, Exchange & Repair | PTC-1227    | -                                                            |





### Bussing

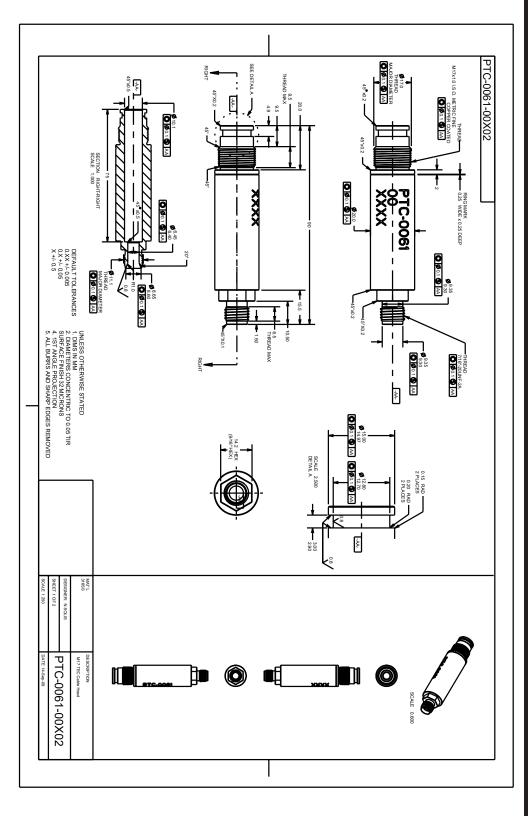
Modules can be bussed together. Order PTC-1222 Bus Kit (Single). The bus distributes power and Modbus communications from one module to all the other modules without external wiring. It is suitable for workshops and well clusters.

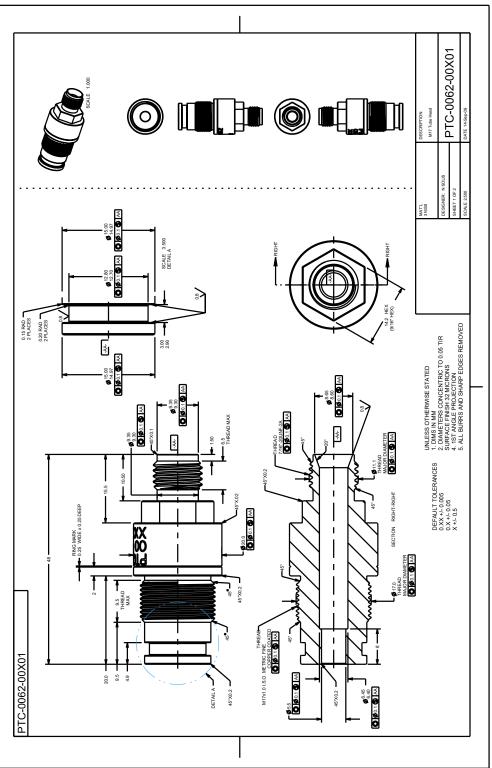


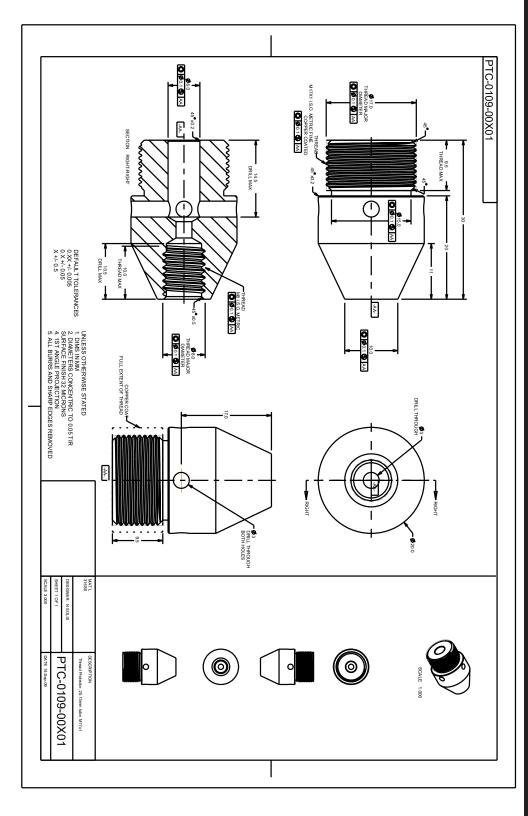










| Part Drawings                        |                |
|--------------------------------------|----------------|
| M17 TEC Cable Head                   | PTC-0061-00x02 |
| M17 Tube Head                        | PTC-0062-00x01 |
| Thread Protector, 20.13mm tube,M17x1 | PTC-0109-00x01 |






Page 35













tipesas.com.co



Info@tipesas.com.co



Tecnología Integral Petrolera Cra. 7 # 156-68 Of. 1802 Bogotá – Colombia

